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We investigate the ballistic motion of electrons in III-V semiconductor quantum wells with Rashba spin-
orbit coupling in a perpendicular magnetic field. Taking into account the full quantum dynamics of the
problem, we explore the modifications of classical cyclotron orbits due to spin-orbit interaction. As a result, for
electron energies comparable to the cyclotron energy, the dynamics is particularly rich and not adequately
described by semiclassical approximations. Our study is complementary to previous semiclassical approaches
concentrating on the regime of weaker fields.
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I. INTRODUCTION

The coupling between the orbital and the spin degrees of
freedom of itinerant carriers in semiconductors is a major
direction of work in today’s spintronics research. An early
key example is given by the proposal of a spin field-effect
transistor put forward by Datta and Das already in 1990.1

The merit of this paradigmatic theoretical concept is that it
allows, once realized, the all-electrical control of electron
spins in two-dimensional III-V semiconductor structures,
avoiding any magnetic field. On the other hand, at about the
same time, van Houten et al. published a pioneering both
theoretical and experimental study of magnetic focusing of
electrons in semiconductor quantum wells.2 Here, the control
over the orbital degree of freedom of the carriers is achieved
by a perpendicular magnetic field of typically moderate
strength, very analogously to the classical cyclotron motion.
This effect has been demonstrated both for conduction-band
electrons2 and for valence-band holes;3,4 very recently, cyclo-
tron orbits in an electron focusing experiment were directly
imaged using scanning probe microscopy.5

Other recent experimental studies have addressed the
question whether it is feasible to spatially separate �and, in
turn, separately detect� carriers in different spin-spilt sub-
bands of a quantum well via such transverse focusing
techniques.6–8 In these investigations, the spin splitting of
subbands was either provided by a strong in-plane compo-
nent of the magnetic field6 or, more relevant for the present
study, by specific contributions to spin-orbit coupling acting
on the spin of carriers in semiconductor quantum wells.7–9 In
the latter case, different initial spin states provide via spin-
orbit interaction a separation of carriers in real space, an
effect which has already attracted also significant theoretical
interest.10–15 In the present paper, we provide a complemen-
tary theoretical study of cyclotron motion and magnetic fo-
cusing under the influence of spin-orbit interaction using a
fully quantum mechanical approach.

A related phenomenon is the predicted Zitterbewegung of
carrier wave packets in the presence of spin-orbit
coupling.16–28 Zitterbewegung of free electrons described by
the four-component Dirac equation was originally predicted
by Schrödinger and occurs for wave packets which contain
solutions of the free Dirac equation of both positive and

negative energies.29 In effective models for electrons and
holes in semiconductors, the intrinsic spin-dependent energy
splitting due to spin-orbit coupling can lead to a similar os-
cillatory Zitterbewegung.16,17,21,25 However, the latter effect
is predicted to occur on time and length scales being much
more favorable for experimental detection compared to the
situation of free electrons where Zitterbewegung has never
been observed so far.16,17 On the other hand, a unifying as-
pect of these two phenomena is given by the fact that Zitter-
bewegung of itinerant band carriers in semiconductors occurs
due to spin-orbit interaction which can be viewed as the non-
relativistic limit of the strong coupling between spin and
momentum being manifest in the Dirac equation.

Moreover, the interplay between spin-orbit coupling and
cyclotron motion in a perpendicular magnetic field was al-
ready studied theoretically in some detail in Refs. 25 and 27.
Here, the authors concentrate on semiclassical approxima-
tions and on an analogy between the Jaynes-Cummings
model of atomic transitions in a radiation field and the
Rashba Hamiltonian30 in a perpendicular magnetic field, an
aspect to be briefly reviewed below. In the present paper, we
report on numerical evaluations of the full quantum me-
chanical dynamics of a free electron in a two-dimensional
quantum well with spin-orbit interaction and a perpendicular
magnetic field, avoiding any further approximation. As ex-
plained in the Appendix, our approach is so far technically
limited to the Hilbert space of the first few ten lowest Landau
levels. For typical electron energies of a few meV, this re-
striction corresponds for usual III-V semiconductor materials
to magnetic fields of a few tesla. Such fields are somewhat
larger than those considered in circumstances of semiclassi-
cal approximations neglecting Landau quantization, and in
this sense, our present study is complementary to those pre-
vious investigations. For definiteness, we will also concen-
trate on spin-orbit coupling of the Rashba type, although also
other effective coupling terms can be considered. Finally, we
note that a complementary theoretical study of conduction-
band electrons being subject to spin-orbit coupling and a
homogeneous in-plane electric field was given very recently
in Ref. 24.

This paper is organized as follows. In Sec. II, we summa-
rize the essential properties of the Rashba model in a perpen-
dicular magnetic field. We discuss the analogy to the Jaynes-
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Cummings model of quantum optics and we describe in
detail the initial states used for the numerical simulations of
time evolutions to be discussed in Sec. III. All further tech-
nical details can be found in the Appendix. We close with the
conclusions in Sec. IV.

II. MODEL AND APPROACH

We consider an electron in an n-doped quantum well be-
ing subject to Rashba spin-orbit coupling30 and a homoge-
neous perpendicular magnetic field coupling both to the or-
bital degrees of freedom as well as to the spin, i.e., the
single-particle Hamiltonian reads

H =
�� 2

2m
+

�

�
��x�

y − �y�
x� +

1

2
g�BB�z. �1�

Here, m is the effective band mass, �� = p� +eA� /c is the two-
component kinetic momentum with the canonical momen-

tum p� and the vector potential A� generating the magnetic

field B� along the growth direction of the quantum well cho-

sen as the z axis, and B� =��A� . The effective Rashba spin-
orbit coupling parameter is denoted by �, g is the effective g
factor, �B is the Bohr magneton, and �� are the usual Pauli
matrices. Note that the Rashba Hamiltonian can be viewed as
a momentum-dependent field coupling to the electron spin,
an interpretation we will use later on in the discussion of
numerical results. Moreover, in the following, we will as-
sume, without loss of generality, that the product of the elec-
tron charge �−e�=−�e� and the magnetic field strength B is

always positive, �−e�B�0, i.e., B� points along the negative z
direction.

A. Spectrum and eigenstates

Defining the usual bosonic operators

a =
1
�2

�

�
��x + i�y�, a+ = �a�+, �2�

fulfilling �a ,a+�=1, and �=��c / �eB� being the magnetic
length, the Hamiltonian reads

H = ��c�a+a +
1

2
� +

i
�2

�

�
�a�− − a+�+� +

1

2
g�BB�z,

�3�

where �c= �eB� / �mc� is the cyclotron frequency, and we have
defined �	=�x	 i�y. The operators a and a+ connect differ-
ent Landau levels. Note that the Hamiltonian �including the
spin-orbit part� can be expressed in terms of a and a+ only;
no further orbital operators occur. Therefore, its eigenstates
have the same Landau level degeneracy as in the absence of
spin-orbit coupling.

Fixing a certain intra-Landau-level quantum number, we
denote by �n ,�	= ��a+�n /�n!��0,�	 a state in the nth Landau
level with spin direction �� 
↑ , ↓ �. Then, �0, ↑ 	 is an eigen-
state with energy 
0= ���c+g�BB� /2, and all other eigen-
states are of the form30,31

�n, 	 	 = un
	�n,↑	 + vn

	�n − 1,↓	 , �4�

with energy


n
	 = ��cn 	�2n

m�2

�2 ��c +
1

4
���c + g�BB�2, �5�

and the amplitudes parametrizing the eigenstates read

un
	 =� 1

2
	

1

4
���c + g�BB�

�2n
m�2

�2 ��c +
1

4
���c + g�BB�2

1/2

, �6�

vn
	 = 	 i sgn���

�� 1

2
�

1

4
���c + g�BB�

�2n
m�2

�2 ��c +
1

4
���c + g�BB�2

1/2

.�7�

Thus, the energy levels and eigenstates of the system are
characterized by the interplay of three energy scales: the cy-
clotron energy 
c=��c, the Zeeman energy 
Z=g�BB, and
the Rashba energy 
R=m�2 /�2.

B. Analogy to the Jaynes-Cummings model

As it was recognized recently in Ref. 25, the Hamiltonian
�Eq. �3�� is formally equivalent to the Jaynes-Cummings
model for atomic transitions in a radiation field. This model
has been studied very intensively in theoretical quantum op-
tics, and the time evolution of orbital and spin operators has
been obtained in terms of analytical but rather implicit
expressions.32,33 To explore this analogy, it is useful to sepa-
rate the Hamiltonian into two commuting parts, H=H1
+H2, with

H1 = ��c�a+a +
1 + �z

2
� , �8�

H2 =
i

�2

�

�
�a�− − a+�+� −

��c

2
�1 −

gm

2m0
��z, �9�

where m0 is the bare electron mass. Then, the time evolution
of the position operators in the Heisenberg picture,

r�H�t� = eiHt/�r��0�e−iHt/�, �10�

can be written as25,32,33

xH�t� + iyH�t� = x0 + iy0 +
ie−i��c+�+�t

�− − �+
��−

�c

�x + i�y

m
+ i

�

�
�+�

−
ie−i��c+�−�t

�− − �+
��+

�c

�x + i�y

m
+ i

�

�
�+� , �11�

where the operator-valued frequencies �	 are given by
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��	 = − H2 	�2
m�2

�2 ��c + H2
2, �12�

and x0, y0 are the usual coordinates of the center of the clas-
sical cyclotron orbit which commute with the Hamiltonian
and are therefore constant in time.

The result �Eq. �11�� is correct but still not very explicit.
In particular, the operator character of the quantities �	

poses severe obstacles against evaluating this expression for
a given initial state. Therefore, in the present work, we fol-
low a different route toward the full quantum dynamics by
expanding the initial state of the system in terms of its eigen-
states.

C. Gauge and initial state

In the very general considerations, so far, there was not

any necessity to specify the gauge of the vector potential A� .
For the practical calculations to be described below, how-

ever, we shall work in the Landau gauge A� = �0,Bx ,0� where
the spinless orbital eigenstates in the absence of spin-orbit
coupling have the following well-known form:

�r��n,k	 =
in

�n!2n���
Hn� x − k�2

�
�exp�−

1

2�2 �x − k�2�� eiky

�2�
,

�13�

labeled by a wave number k corresponding to translational
invariance in the y direction or, equivalently, by a guiding
center coordinate k�2 for the x direction. Hn�x� are the usual
Hermite polynomials and the phases of the above wave func-
tions have been adjusted to fulfill a�n ,k	=�n�n−1,k	.

In what follows, we will be interested in the quantum
dynamics of an initial state ��	 being a direct product of an
orbital and a spin state,

��	 = �	��

�
� , �14�

where the spinor components are related to the usual
polar angles �, � of the initial spin direction via �
=exp�−i� /2�cos�� /2�, �=exp�i� /2�sin�� /2�. As a generic
initial orbital state, we consider

�r��	 =
1

��d
e−�r2/2d2�+ik0y , �15�

i.e., a normalized Gaussian wave packet of spatial width d
and initial momentum �k0 along the y axis, i.e., the direction
of translational invariance of the Hamiltonian. The initial
position of the particle is at the origin, ���r���	=0.

The energy of the above initial state can be expressed as

���H��	 =
1

2
��c��2

d2 +
d2

2�2 + k0
2�2� −�m�2

�2 ��ck0���̄�

+ �̄�� +
1

2
g�BB��̄� − �̄�� , �16�

where the bar denotes complex conjugation. Conversely, for

a wave packet of the above form with fixed energy E and
given width and spin state, the initial momentum reads

k0� =�m�2

�2

��c
��̄� + �̄��

	 � 2E

��c
− ��2

d2 +
d2

2�2 + g�BB��̄� − �̄���
+

m�2

�2

��c
��̄� + �̄��2�

1/2

. �17�

D. Time evolution

A conceptually straightforward way to evaluate time-
dependent expectation values is to expand the initial state in
terms of the eigenstates of the above system and use the
matrix elements of the desired operator in this eigenbasis.
For instance, for the kinetic-momentum operator, this ap-
proach formally reads

����� H�t���	 = �
n1,n2=0

�

�
�1,�2

�
−�

�

dk����n1,k,�1	

��n1,k,�1��� �n2,k,�2	�n2,k,�2��	

�exp� i

�
�
n1

�1 − 
n2

�2�t�� , �18�

where we have already anticipated that these operators are
diagonal in the intra-Landau-level quantum number k; the
same holds for the spin operators �� H�t�. The summation over
�i, i� 
1,2�, runs over �i=	 for ni�0 and �i=↑ for ni=0.
The expectation values of the position operators can be ob-
tained from those of the momenta via

x = x0 +
c

eB
�y , �19�

y = y0 −
c

eB
�x, �20�

where the expectation values of the constant centers of the
classical cyclotron motion are given by ���x0��	=k0�2,
���y0��	=0. As explained in detail in the Appendix, the in-
tegration over the wave numbers k can be performed sepa-
rately and serves as an input for the numerical evaluation of
the remaining sums. For any further technical details, we
refer the reader to the Appendix.

III. RESULTS

We now present the results of numerical simulations of
the time evolution of expectation values described in Eq.
�18�. All relevant technical details can be found in the Ap-
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pendix. In all simulations we assume the Rashba coefficient
to be positive, ��0.

A. Cyclotron motion

Let us first investigate the influence of spin-orbit coupling
on the cyclotron motion, in general. Figure 1 shows the par-
ticle orbit evaluated in terms of the expectation values
���r�H�t���	ª �r�H�t�	 of a wave packet of initial width d
=1.0� and group wave number k0=2.0 /� for various initial
spin states. The Rashba energy is 
R=0.2��c, while the
Zeeman energy is, for simplicity, put to zero here. In the left
�right� top panel, the spin points initially along the positive
�negative� x direction. The middle and bottom panels show
the corresponding data for the y and z directions, respec-
tively. The total simulation time is always t=30 /�c. The
strictly circular motion �dotted lines� with radius k0�2 occur-
ring in the absence of spin-orbit coupling is shown in all
graphs as a guide to the eyes. The magnetic length � can
be conveniently converted into practical units via �
=257 Å /�B /T.

All six graphs have the appearance of a more or less dis-
torted spiral. The prima vista most regular motion is found in
the two top panels where the initial spin direction is collinear
within the initial direction of the momentum-dependent cou-
pling to the spin described by the Rashba Hamiltonian. This
situation was investigated very recently in Ref. 27 in the

framework of several schemes of semiclassical approxima-
tions. In one of these approaches, the spin is assumed to
follow in an adiabatic fashion the momentum-dependent
field coupling to it, where both quantities are taken to be
classical variables. We will discuss below to what extent this
approximation leads to useful results in the parameter regime
considered here where the energy of the initial wave packet
is comparable to the cyclotron energy.

In Fig. 2, we have plotted the corresponding spin dynam-
ics expressed in terms of the time-dependent expectation val-
ues ��� H�t�	. The initial conditions in the three panels are the
same as in the left column of Fig. 1. The solid lines show the
modulus of the vector ���� H�t�	� of the time-dependent expec-
tation values of spin components. This quantity can be used
as a measure of entanglement between the electron spin and
its orbital degrees of freedom.34,35 In fact, when tracing out
the real-space degrees of freedom, the time-dependent re-
duced density matrix of the spin reads

�spin�t� = trorb�e−�i/��Ht��	���e�i/��Ht�

=
1

2
�1 + ��H

z �t�	 ��H
+ �t�	

��H
− �t�	 1 − ��H

z �t�	
� , �21�

with eigenvalues �	�t�= �1	 ���� H�t�	�� /2. Thus, a modulus
of ���� H�t�	�=1 �as present in the intitial condition at t=0�
corresponds to a direct product of spin and orbital state with
a reduced spin density matrix of rank 1, while a vanishing
modulus ���� H�t�	�=0 indicates the maximal entanglement be-
tween spin and orbital degrees of freedom, and the reduced
spin density matrix is proportional to the unit matrix.34,35 As
seen in Fig. 2, the modulus ���� H�t�	� is generically clearly
smaller than unity signaling between spin and real-space co-
ordinates, an effect certainly beyond semiclassical approxi-
mations.
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FIG. 1. Orbital dynamics of a wave packet of initial width d
=1.0� and group wave number k0=2.0 /� for various initial spin
states. The Rashba energy is 
R=0.2��c, while the Zeeman energy
is put to zero. In the left �right� top panel, the spin points initially
along the positive �negative� x direction. The middle and bottom
panels show the corresponding data for the y and z directions, re-
spectively. The simulation time is always t=30 /�c. The strictly cir-
cular motion �dotted lines� with radius k0�2 occurring in the absence
of spin-orbit coupling is always shown as a guide to the eyes.
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FIG. 2. Spin dynamics as expressed in terms of the time-
dependent expectation values corresponding to the left column of
Fig. 1. The solid lines show the quantity ���� H�t�	� which is a mea-
sure of entanglement between the spin and the orbital degrees of
freedom.
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Let us now come back to the investigation of the
adiabatic-semiclassical approximation employed in Ref. 27.
Here, both spin and particle momenta are treated as classical
variables, and the projection of the spin on the instantaneous
direction of the momentum-dependent field is assumed to be
constant. Intuitively, this assumption corresponds to strong
spin-orbit coupling,27 as it is the case for a Rashba energy of

R=0.2��c studied above. To investigate the validity of this
adiabatic approximation, we introduce

Q1�t� ª
���x�H�t�	��H

y �t�	 − ���y�H�t�	��H
x �t�	

���� H�t�	�
�22�

and

Q2�t� ª
���x�H�t�	��H

y �t�	 − ���y�H�t�	��H
x �t�	

���� H�t�	����� H�t�	�
. �23�

The first quantity is the projection of the vector ��� H�t�	 onto
the direction of the momentum-dependent field evaluated in
terms of ��� H�t�	, whereas in Q2, we have additionally di-
vided by ���� H�t�	� in order to eliminate the effects of en-
tanglement discussed above. For the adiabatic-semiclassical
approximation to be valid, Q1 and Q2 should be reasonably
constant in time.

Figure 3 shows the time dependence of Q1 and Q2 for the
same system parameters as in Fig. 1. In particular, ��� H�0�	
points along the positive y direction which means that the
momentum-dependent field coupling to the spin is initially in
the x direction in spin space. In the top panel, the spin points
initially along the positive �negative� x direction with

Q1�0�=Q2�0�= +1 �Q1�0�=Q2�0�=−1�. The middle and bot-
tom panels show the analogous data with the spin initially
aligned along the y and z axes, respectively. Here, we always
have Q1�0�=Q2�0�=0. As seen in the figure, Q1�t� and Q2�t�
significantly deviate from a constant value even in the case
where the spin is initially fully aligned with the momentum-
dependent field �top panel�. From these observations, we
conclude that this adiabatic-semiclassical approximation is
rather problematic in the parameter regime studied here
where the total energy of the electron wave packet is of the
order of the cyclotron energy. In fact, the behavior of the
system is only rather poorly represented by introducing two
different cyclotron radii corresponding to two spin direc-
tions, as suggested in Ref. 27. On the contrary, the dynamics
is much richer and show trajectories reminiscent of a chaotic
behavior. The latter observation becomes even more signifi-
cant at a smaller initial group wave number k0 as one can see
in Fig. 4, where we have plotted trajectories analogous to
those in Fig. 1 but with a shorter initial group wave vector of
only k0=0.5 /�. For lower cyclotron energies, however, we
expect the semiclassical approximation of Ref. 27 to be sig-
nificantly better fulfilled than in the regime studied here. The
smaller the cyclotron energy compared to the total energy of
the wave packet, the larger the number of Landau levels to
be included in the numerical simulation. As explained in the
Appendix, such simulations require the precise numerical
evaluation of high-order Hermite polynomials, a task which
technically limits our approach to the regime where the cy-
clotron energy is comparable the energy of the initial wave
packet. In this sense, our study is complementary to previous
semiclassical approaches concentrating on the regime of
weaker fields.

Finally, Fig. 5 shows the orbital dynamics for again the
same system as in Fig. 1 for various values of the initial
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FIG. 3. The quantities Q1 �solid lines� and Q2 �dashed lines�
defined in the text as a function of time for the same system param-
eters as in Fig. 1. In the top panel, the spin points initially along the
positive �negative� x direction with Q1�0�=Q2�0�= +1 �Q1�0�
=Q2�0�=−1�. The middle and bottom panels show the analogous
data with the spin initially aligned along the y and z axes, respec-
tively. Here, we always have Q1�0�=Q2�0�=0.
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FIG. 4. Orbital dynamics for the same system as in Fig. 1 but
with a smaller initial group wave number of only k0=0.5 /�. Again,
the strictly circular motion occurring in the absence of spin-orbit
coupling is always shown as a guide to the eyes.
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group wave number k0 and the spin initially always pointing
along the positive x axis. For a better comparison, the com-
ponents of �r�	 are given in units of k0�2. Clearly, the dynam-
ics becomes more “regular” �or less “chaotic”� the larger the
initial group wave number k0.

In the above investigations, we have concentrated on the
position operator r�H�t� to describe the time evolution of the
initial state chosen as a Gaussian wave packet. Regarding the
width of this wave packet �as opposed to its center �r�H�t�	�,
let us consider the case of vanishing spin-orbit coupling.
Here, the components of the position operator are straight-
forwardly obtained as

xH�t� = x�0� +
�x�0�
m�c

sin��ct� +
�y�0�
m�c

�1 − cos��ct�� ,

�24�

yH�t� = y�0� +
�y�0�
m�c

sin��ct� −
�x�0�
m�c

�1 − cos��ct��

�25�

and are completely analogous to the classical cyclotron mo-
tion. For an initial state Gaussian wave packet given in Eq.
�15�, the time-dependent width reads

�xH
2 �t�	 − �xH�t�	2 + �yH

2 �t�	 − �yH�t�	2

= d2 + �2
�4

d2 − d2��1 − cos��ct�� . �26�

Thus, differently from the dispersive dynamics of a wave
packet in the absence of a magnetic field, the width does not

increase to infinity but remains bounded and rather oscillates
with the cyclotron frequency, similarly to the time evolution
of a coherent state in a harmonic oscillator. In the presence of
spin-orbit coupling, we expect the time evolution of the
width of the initial state to be more complex but still essen-
tially bounded.

B. Magnetic focusing

Let us now turn to the issue of magnetic focusing under
the influence of spin-orbit coupling. A magnetic focusing ex-
periment is conceptually very simple and sketched in Fig. 6:
electrons enter a quantum well at a location x=xi, follow a
ballistic cyclotron orbit, and impinge again on the boundary
of the system at a location x=xf. In the absence of spin-orbit
coupling, this difference in coordinate depends, just as in the
classical case, only on the applied magnetic field and the
initial group wave number k0, xf −xi=2k0�2. Thus, using an
appropriately located detection contact, one can study the
electron transport as a function of these two quantities.

In a typical experiment, however, rather the energy E of
electrons �defined by the Fermi energy of the injecting lead�
not their momentum is fixed with both quantities being con-
nected via Eq. �17�. Therefore, the wave number k0 of an
injected electron will, in general, depend on its spin state;
only in the absence of both Zeeman coupling and spin-orbit
interaction k0 is independent of the electron spin. In turn, for
random initial spin directions, xf −xi will be distributed ac-
cording to some probability density Px�xf −xi�. Figure 7
shows a numerical evaluation of Px�xf −xi� for a wave packet
of width d=� and total energy E=2.0�� at zero Zeeman
coupling and different Rashba energies. The initial angular
coordinates cos � and � determining the complex amplitudes
� and � in the initial state �Eq. �14�� were chosen at random
from uniform distributions in the intervals �−1,1� and
�0,2��, respectively. The data are averaged over 500 000
randomly chosen initial spin states each. At a small Rashba
energy of only 
R=m�� /��2=0.01�� �top left panel�, the
dynamics depends only very weakly on spin and Px�xf −xi� is
strongly peaked around xf −xi=2k0�2�3.16, the classical cy-
clotron diameter expected in the absence of spin-orbit cou-
pling. With increasing Rashba energy, this peak undergoes a
broadening with the maximum of the probability density be-
ing located at smaller values of xf −xi. Figure 8 shows the
same type of data at a Zeeman energy of 
Z=0.1�� which
does not lead to any qualitative difference.

In summary, the initial narrow peak of the probability
density Px�xf −xi� at small spin-orbit coupling broadens with
increasing Rashba energy and develops a nontrivial structure
in terms of a maximum at small arguments with a broad
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shoulder reaching to higher values. The structures seen in
Figs. 7 and 8 appear to be somewhat different to the results
of Ref. 11 where a splitting of the conductance peak as a
function of magnetic field was found for increasing Rashba
coupling. These two peaks can be related to two different
effective cyclotron radii corresponding to two initial spin
states with respect to a quantization axis being perpendicular
to the initial momentum and the magnetic field, an observa-

tion similar to the “strong coupling” semiclassical scenario
of Ref. 27. Thus, in the light of these investigations, one
could also expect a double-peak structure to develop in the
probability density Px�xf −xi�. However, the investigations of
Ref. 11 work at clearly higher electron energies compared to
the cyclotron energy, and Landau quantization is explicitly
neglected. This is in contrast to the present study which
works at larger cyclotron energies taking into account the full
quantum dynamics of the problem.

IV. CONCLUSIONS AND OUTLOOK

We have studied the ballistic motion of electrons in III-V
semiconductor quantum wells with Rashba spin-orbit cou-
pling and a perpendicular magnetic field. Differently from
previous investigations, our numerical approach takes into
account the full quantum mechanics of the problem and is
technically limited to situations where the cyclotron energy
is of the same order as the energy of the initial electron wave
packet. For typical experimental parameters, this restriction
corresponds to magnetic fields of a few tesla. Such fields are
larger than those considered previously in circumstances of
semiclassical approaches neglecting Landau quantization,
and in this sense, our present study is complementary to such
semiclassical approaches. As a result, in the parameter re-
gime considered here, the electron dynamics is particularly
rich and not adequately described by semiclassical approxi-
mations. An interesting issue for futher investigations here
includes the question whether the seemingly chaotic trajec-
tories shown in Sec. III A are truly ergodic. Moreover, it is
tempting to attribute the irregularity of these trajectories to
the Zitterbewegung predicted previously for electron motion
in two-dimensional electron gases without magnetic
fields.16–28 What both phenomena have indeed in common is
the fact that they are the result of spin-orbit coupling, and the
irregular motion of electrons in a perpendicular magnetic
field is the consequence of the nonequidistant spectrum of
Landau levels induced by spin-orbit interaction.

In this study, we have concentrated on spin-orbit coupling
of the Rashba type. However, the situation of linear Dressel-
haus coupling can be treated analogously31 as it only
couples, like the Rashba term, pairs of neighboring Landau
levels with opposite spin. If both types of spin-orbit coupling
terms are present, all Landau levels are coupled, and the
single-particle Hamiltonian cannot be diagonalized analyti-
cally anymore. In this case, the eigensystem of the Hamil-
tonian needs to be computed numerically or appropriate ap-
proximations have to be employed.13 It is an interesting
question whether the inclusion of both kinds of couplings
leads to qualitatively new observations. A particular situation
is reached if both terms occur with the same magnitude,
where, for zero Zeeman coupling, a new conserved spin op-
erator arises.36

Further possible extensions of the present work include
the study of valence-band holes �as opposed to conduction-
band electrons� with an effective spin-orbit coupling being
trilinear in the momentum and electron or hole dynamics
under the influence of an additional in-plane electric field.
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APPENDIX: TECHNICAL DETAILS

1. Overlap with basis states

The overlap of the initial orbital state �Eq. �15�� and the
basis states �Eq. �13�� of the usual Landau levels can be
expressed as

�n,k�	 = �− i�n� 2

n!2n� d
��

�d

�

�1 +
d2

�2
� 1 −

d2

�2

1 +
d2

�2


n/2

�exp�−
1

2

k0
2�2

1 +
d2

�2

−
d2

2
�k − k0�2�

�Hn�−
k0�

��1 −
d2

�2��1 +
d2

�2�� , �A1�

=�− i�n� 2

n!2n� d
��

�d

�

�1 +
d2

�2

�exp�−
1

2

k0
2�2

1 +
d2

�2

−
d2

2
�k − k0�2�

� �
p=0

�n/2� � �− 1�p

p!

n!

�n − 2p�!
�− 2k0��n−2p

��1 −
d2

�2�p�1 +
d2

�2�p−n� , �A2�

where �x� denotes the largest integer not larger than x and the
second of the above equations shows explicitly that the over-
lap is well behaved at d=�. The above expressions can be
obtained by using the explicit form of the Hermite polyno-
mials,

Hn�x� = �− 1�nex2 dn

dxne−x2
, �A3�

= �
p=0

�n/2� � �− 1�p

p!

n!

�n − 2p�!
�2x�n−2p� . �A4�

Finally, the overlap of the initial state �Eq. �14�� with the
spinful eigenstates �Eq. �4�� is given by

�0,k,↑��	 = ��0,k�	 , �A5�

�n,k,���	 = ūn
���n,k�	 + v̄n

���n − 1,k�	 . �A6�

2. Matrix elements

As already stated, the matrix elements of the kinetic mo-
mentum as well as the spin operators are diagonal with re-
spect to the wave number k. For the kinetic momentum, the
matrix elements read explicitly

�0,k,↑��x�n,k,�	 =
�

��2
u1

��1,n, �A7�

�0,k,↑��y�n,k,�	 =
− i�

��2
u1

��1,n, �A8�

�n1,k,�1��x�n2,k,�2	

= ��n1 + 1ūn1

�1un1+1
�2 + �n1v̄n1

�1vn1+1
�2 �

�

��2
�n1,n2−1

+ ��n1ūn1

�1un1−1
�2 + �n1 − 1v̄n1

�1vn1−1
�2 �

�

��2
�n1,n2+1,

�A9�

�n1,k,�1��y�n2,k,�2	

= ��n1 + 1ūn1

�1un1+1
�2 + �n1v̄n1

�1vn1+1
�2 �

− i�

��2
�n1,n2−1

+ ��n1ūn1

�1un1−1
�2 + �n1 − 1v̄n1

�1vn1−1
�2 �

i�

��2
�n1,n2+1.

�A10�

The in-plane components of the spin operator have the ma-
trix elements

�0,k,↑��x�n,k,�	 = v1
��1,n, �A11�

�0,k,↑��y�n,k,�	 = − iv1
��1,n, �A12�

�n1,k,�1��x�n2,k,�2	 = ūn1

�1vn1+1
�2 �n1,n2−1 + v̄n1

�1un1−1
�2 �n1,n2+1,

�A13�

�n1,k,�1��y�n2,k,�2	 = − iūn1

�1vn1+1
�2 �n1,n2−1 + iv̄n1

�1un1−1
�2 �n1,n2+1,

�A14�

whereas �z is diagonal in the Landau level index n, and the
nonvanishing matrix elements read

�0,k,↑��z�0,k,↑	 = 1, �A15�

�n,k,�1��z�n,k,�2	 = ūn
�1un

�2 − v̄n
�1vn

�2. �A16�
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3. Explicit time evolution

Using the expressions given in the previous sections, the time-evolved expectation values of the components of the kinetic
momentum can be formulated as

���x�H�t�	 = Re��2
�

�
�

�=	

e�i/���
0−
1
��t����2�u1

��2J0 + �̄�u1
�v̄1

�I0�� + Re��2
�

�
�
n=1

�

�
�1,�2=	

e�i/���
n
�1−
n+1

�2 �t����2��n + 1�un
�1�2�un+1

�2 �2

+ �nun
�1v̄n

�1ūn+1
�2 vn+1

�2 �Jn + ���2��n + 1ūn
�1vn

�1un+1
�2 v̄n+1

�2 + �n�vn
�1�2�vn+1

�2 �2�Jn−1 + �̄���n + 1�un
�1�2un+1

�2 v̄n+1
�2

+ �nun
�1v̄n

�1�vn+1
�2 �2�In + ��̄��n + 1ūn

�1vn
�1�un+1

�2 �2 + �n�vn
�1�2ūn+1

�2 vn+1
�2 �Kn�� , �A17�

���y�H�t�	 = Re�− i�2
�

�
�

�=	

e�i/���
0−
1
��t����2�u1

��2J0 + �̄�u1
�v̄1

�I0��
+ Re�− i�2

�

�
�
n=1

�

�
�1,�2=	

e�i/���
n
�1−
n+1

�2 �t����2��n + 1�un
�1�2�un+1

�2 �2

+ �nun
�1v̄n

�1ūn+1
�2 vn+1

�2 �Jn + ���2��n + 1ūn
�1vn

�1un+1
�2 v̄n+1

�2 + �n�vn
�1�2�vn+1

�2 �2�Jn−1 + �̄���n + 1�un
�1�2un+1

�2 v̄n+1
�2

+ �nun
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�1�vn+1
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�1vn
�1�un+1

�2 �2 + �n�vn
�1�2ūn+1

�2 vn+1
�2 �Kn�� , �A18�

where we have defined

In = �
−�

�

dk��n,k	�n,k�	 , �A19�

Jn = �
−�

�

dk��n,k	�n + 1,k�	 , �A20�

Kn = �
−�

�

dk��n − 1,k	�n + 1,k�	 . �A21�

Using Eq. �A2�, it is straightforward to derive explicit ex-
pressions for these integrals in terms of finite sums to be
evaluated numerically. As an example, for In, one finds

In =

d2

�2

1 +
d2

�2

�
p,q=0

�n/2�

� �− 1�p+q

p!q!

n!2n+1−2�p+q�

�n − 2p�!�n − 2q�!

��1 −
d2

�2�p+q

� 1

1 +
d2

�2 
2n−�p+q�

Rn−�p+q���,d,k0�� ,

�A22�

with

Rm��,d,k0� =
�

��
�

−�

�

dk�k��2m

�exp�− � �k��2

1 +
d2

�2

+ d2�k − k0�2��
= � �4 + d2�2

�4 + d2�2 + d4�m+1/2

exp�−
�4d2k0

2

�4 + d2�2 + d4�
��−

1

4
�m

H2m�i� �4 + d2

�4 + d2�2 + d4d2k0� . �A23�

Note that, despite the imaginary argument of the Hermite
polynomial H2m, Rm is always real and positive. Thus, com-
puting the quantities In �and similarly Jn and Kn� requires
again the evaluation of Hermite polynomials. At large Lan-
dau level index n, this operation limits the accuracy of the
present numerical approach. Given the data In, Jn, Kn, the
summations �Eqs. �A17� and �18�� are to be performed nu-
merically where the sum over the Landau level index n can
be truncated at a sufficiently large energy. For the simula-
tions presented in this work, it is sufficient to take into ac-
count the first 25 Landau levels where the evaluation of Her-
mite polynomials is numerically unproblematic.

It is noteworthy that the quantities In, Jn, Kn fulfill certain
sum rules which provide a convenient check on numerical
evaluations. For instance, normalization of the initial state
�	 obviously requires
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�
n=0

�

In = 1. �A24�

Moreover, we have

�
n=0

�

�n + 1Jn = ��a�	 =
i

�2
k0� . �A25�

Analogously, one derives

�
n=0

�

�n�n + 1�Kn = −
1

4

d2

�2 −
1

2
k0

2�2. �A26�

Finally, coming back to physical expectation values, the time-evolved spin components read

���H
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���H
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�1un
�2 − v̄n

�1vn
�2�v̄n

�2In−1

+ �̄�un
�1�ūn
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